EDVY Closes April 26th! Enter Now Top Link
Home > Building Materials

Innovative Materials: Carbon Fibers Made from Algae

Innovative Materials: Carbon Fibers Made from Algae

Algentechnikum der TU Muenche am Ludwig Bölkow-Campus in Ottobrunn: Prof. Thomas Brueck; Fachgebiet Industrielle Biokatalyse; Dipl ing Andreas Apel in der Halle Foto: Andreas Heddergott / Verwendung frei fuer die Berichterstattung ueber die TU Muenchen unter Nennung des Copyrights

Munich – In combination with granite or other types of hard rock, carbon fibers make possible all-new construction and building materials. Theoretical calculations show: If the carbon fibres are produced from algae oil, production of the innovative materials extracts more carbon dioxide from the atmosphere than it sets free. A research project spearheaded by the Technical University of Munich (TUM) is to further advance these technologies.

The most recent global climate report (IPCC Special Report on Global Warming of 1.5 °C) considers manufacturing processes which use more carbon dioxide (CO2) than they release to be an important option to get climate change under control.

The objective of the project started today under the title “Green Carbon” is to develop manufacturing processes for polymers and carbon-based light-weight construction materials based on algae which may be utilised in the aviation and automotive industry, for example.

The development of the various processes is accompanied by technological, economical and sustainability analyses. The German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) has dedicated funds amounting to around 6.5 million Euro to fund the research at TU Munich.

Microalgae bind carbon dioxide

Due to their fast growth, microalgae like those cultivated in the globally unrivalled technical algae centre at TUM’s Ludwig Bölkow Campus south of Munich can actively store the greenhouse gas CO2 in form of biomass. CO2 is mainly bound in sugars and algae oil. These can be used in chemical and biotechnological processes to produce precursors for a variety of industrial processes.

For example, oil-forming yeasts produce yeast oil from the algae sugars, which is a feedstock for sustainable plastics. Furthermore, enzymes can split the yeast oil into glycerine and free fatty acids. The free fatty acids are precursors for products like high-quality additives for lubricants, among others; the glycerine can be turned into carbon fibres.

The carbon fiber reinforcement gives the granite plate an extremely high strength, enabling completely new, efficient constructions. (In the background algae cultures.) Image: TUM Fotostelle

Sustainable production of carbon fibers

In the further course of the project, the plastics will be combined with the carbon fibres to produce corresponding composite materials. “The carbon fibers produced from algae are absolutely identical to the fibres currently in use in the industry,” says project lead Thomas Brück, Professor for Synthetic Biotechnology at TU Munich. “Therefore, they can be used for all standard processes in aviation and automotive production.”

Furthermore, carbon fibres and hard rock can be used in a process of the industrial partner TechnoCarbon Technologies to produce novel construction materials. Not only do they have a negative CO2 balance, they are also lighter than aluminium and stronger than steel.

A beam made of carbon fiber reinforced granite (Mineral Carbon Composite, MCC) is load-bearing like steel, light as aluminum and extremely durable.


Carbon Capture and Sustainable Utilization by Algal Polyacrylonitrile Fiber Production: Process Design, Techno-Economic Analysis, and Climate Related Aspects. Uwe Arnold, Thomas Brück, Andreas De Palmenaer und Kolja Kuse, Industrial & Engineering Chemistry Research 2018 57 (23), 7922-7933, DOI: 10.1021/acs.iecr.7b04828

Energy-Efficient Carbon Fiber Production with Concentrated Solar Power: Process Design and Techno-economic Analysis. Uwe Arnold, Andreas De Palmenaer, Thomas Brück und Kolja Kuse. Industrial & Engineering Chemistry Research 2018 57 (23), 7934-7945, DOI: 10.1021/acs.iecr.7b04841

Cited in “IPCC Special Report on Global Warming of 1.5°C”, Chapter 4: Strengthening and implementing the global response; https://report.ipcc.ch/sr15/pdf/sr15_chapter4.pdf

More information:

The chairs of synthetic biotechnology, biochemical engineering, macromolecular chemistry, technical chemistry I and carbon composites of the Technical University of Munich and the industrial partners AHP GmbH & Co. KG, Airbus Defence and Space GmbH, Daimler AG, Fuchs Schmierstoffe GmbH, SGL Carbon GmbH and TechnoCarbon Technology GbR are all involved in the project which has a total volume of about 8.9 million Euro. The Federal Ministry of Education and Research sponsors the project with around 7.1 million Euro in total.