EDVY Closes April 26th! Enter Now Top Link
Home > Latest

Bentley Institute Press publishes Principles of Structural Analysis Static and Dynamic Loads

Exton, Pa. — Bentley Institute Press announced publication of Principles of Structural Analysis – Static and Dynamic Loads, the second book in a three-part series. This compendium of information about STAAD.Pro bridges the gap between structural engineering concepts and their practical application to real-world challenges. The book is authored by Bentley Systems technical support director Krishnan Sathia, a structural engineer with more than 15 years of experience developing and applying STAAD.Pro.

Principles of Structural Analysis – Static and Dynamic Loads is written for a broad spectrum of readers pursuing an in-depth understanding of structural information modeling best practices. Students and early career structural engineers will learn how to model, analyze, and design using STAAD.Pro, while seasoned practitioners will benefit from detailed explanations of STAAD.Pro’s many advanced features.

Said Sathia, “I’ve written this book to help students become structural engineers and practitioners to become more proficient and productive. For instance, in addition to including the fundamentals of creating information models using STAAD.Pro, I’ve provided comprehensive descriptions of various methods for generating data that will save even advanced practicing engineers time and enhance their productivity.”

Principles of Structural Analysis – Static and Dynamic Loads leverages the collective knowledge of structural experts and software technicians across the world to help support the information requirements of practicing engineers. By delving into the methods and principles inherent to STAAD.Pro, it provides a complete understanding of the program. In addition, it reviews common modeling errors and methods for avoiding or overcoming them, enabling engineers to create better and more accurate models in less time. These chapters teach engineers to verify the accuracy of their input and results to ensure models best reflect real-world conditions.

Other subjects covered include static analysis of framed structures, finite element analysis, load generation, seismic and dynamic analysis, steel design, and concrete design.