Investment in smart water systems on the rise

Water network monitoring uses data analytics and statistical modelling to help utilities gain valuable operational knowledge.

The World Bank pegs the annual global value of water produced and lost by utilities at close to $14 billion. In the United States, this problem is exacerbated because of a huge funding gap between water infrastructure needs and current spending. According to the American Society of Civil Engineers, unless new investments are made in the U.S., unreliable water infrastructure will cost the average American household $900 annually in higher water rates and lower wages. The cost for businesses by 2020 will amount to $147 billion, with the economy losing 700,000 jobs by then. Clearly, better management of water resources is essential.

Sophisticated smart water technologies are changing the way water networks are monitored and controlled. As the cost of these technologies decreases and the deployment process becomes easier and faster, more utilities are adopting a “smart network” approach. Studies show that the global market value of smart water technologies is expected to quadruple in the coming decade, from $5.8 billion in 2010 to $22.2 billion in 2020. As chairman of the Smart Water Networks Forum, I have witnessed this rapid growth first hand. Smart, data-driven technologies have resulted in a rising tide of information being available for operators. In the aftermath of the first wave of real-time data sources — which includes sensors, meters, and telemetry — the challenge is for water utilities to make sense of this sea of data effectively and transform it into business intelligence to better inform operational, maintenance, and planning decisions.

Despite living in a time of instant access to media and information, many water utilities are burdened by delayed access to information (and not just raw data) that, if known earlier, could have saved resources and minimized damages. Therefore, the need to monitor water networks in real time with online data transmission and real-time analysis is becoming a higher priority for regulators and utility companies alike.

Water network monitoring is a novel approach that uses data analytics and statistical modelling to help utilities gain valuable operational knowledge. Through this solution, utilities can identify problems, quantify them, locate them, prioritize their actions, assess the work required, dispatch maintenance crews if needed, and more. This insight can further support decision-making on how and where to target resources for preventive maintenance to minimize serious and costly service disruptions. Following are a few key benefits of water network monitoring.

Convert existing data into real-time alerts

Water utilities today spend significant amounts of money purchasing, installing, and maintaining sensors along their distribution networks. More sensors equate to higher network visibility. However, every day, hour, or minute in which a meter is not sending accurate data translates into system losses. Water network monitoring enables early detection of faulty sensors, allowing for immediate action and quick return to normal network visibility.

Water network monitoring works by automatically and remotely processing available network data, therefore reducing detection cost and saving time for both office and field teams. This approach is based on a utility’s existing online data (flow, pressure, water quality) taken from sensors and loggers along the network, as well as additional data sources (e.g., GIS, calendar), that is all transmitted to a central location. The collected information is then used to identify, characterize, and provide alerts on evolving conditions and trends.

When an anomaly is detected and classified, a real-time alert is issued. Utilities may then prevent or respond to various network inefficiencies such as leaks, bursts, zone breaches, water quality issues, meter faults, and other operational malfunctions. Executives are provided with full network overview through personalized dashboards and performance metrics. 

Save water, energy, and system costs

The average American utility can save as much as $2 million per year by using water network monitoring, which typically reduces non-revenue water levels by 25 to 35 percent during the first 12 to 18 months of use. This figure is based on research conducted by the American Water Works Association, which found that the average American utility had an annual cost of $5.81 million in 2012 due to non-revenue water.

Water network monitoring helps minimize water loss and energy consumption, while optimizing utility operations. Studies by water experts at Navigant Research show that the average American water utility loses as much as 30 percent of its water supply through leaks or unbilled usage. Some leaks are ongoing and not detected for months or even years, leading to continuous water loss. A leak’s lifetime can be reduced dramatically through constant monitoring. Utilities can identify leaks before they are visible and treat them immediately to reduce water loss and mitigate the risk of having a big burst — and the resulting service interruptions, negative public relations, major repair costs, etc.

Energy is required in most stages of water production and distribution. The use of water network monitoring can help lower operating costs related to the energy needed to pump, treat, and pressurize water systems. The less water lost through leakage, the less water that has to be produced, treated, and transported.

For water utilities serving areas with significant variations in elevation, the energy savings by network monitoring is two-fold, as transportation of water to higher elevations also requires a great deal of energy. In such cases, even if water is not lost but only breaches from a high-pressure area to a lower-pressure area, the impact in terms of energy waste is fundamental. Inefficiencies of this kind can go on for a while, with costly energy used to pump water that, after getting to the top, just flows downstream again to repeat the cycle.

Such issues, when discovered by a monitoring system, can greatly impact energy savings. The earlier the inefficiency is discovered, the more energy is saved. Reducing leakage levels also can help reduce chemical treatment costs and the need for costly construction projects.

Identify problems in advance

Data from sensors and loggers along a water network, as well as additional data sources, is used to identify, characterize, and provide alerts on evolving conditions and trends. When an anomaly is detected and classified, a real-time alert is issued.

Water network monitoring provides reliable and consistent information about water distribution networks and uncovers network issues early, allowing water utilities to mitigate risks related to water quality and water loss, and reduce the total expenditure on water production and delivery. Timely warning and analysis of network anomalies allows a utility’s operational staff to react before a visible and costly failure develops, energy is wasted, or quality degrades. The potential for early detection depends on the frequency of data used by the monitoring system. The more frequent the data transmissions, the earlier problems can be detected.

By using a monitoring system, utilities can prevent some bursts by finding them earlier, just as they occur, or even before they develop into bursts. Most bursts start as small leaks and grow gradually until they “pop.” Finding these leaks and repairing them when they are still small can prevent a significant number of bursts. Other bursts are sudden. In such cases, if the system receives frequent data from the available sensors, an online monitoring system can identify the burst and help locate it before it becomes visible. As a result, network operations can become more water and energy efficient, while damages and repair expenses are reduced.

Water network monitoring also can prevent water contamination and aid long-term planning. Early intervention can reduce water contaminants and help utilities comply with water quality regulations. Being able to access and share data on a single platform can support decision making and improve collaboration around a broad range of activities across multiple stakeholders. In addition, network monitoring can provide recommendations as to the optimal location of additional sensors that will further increase the detection resolution.

The combination of online monitoring systems with frequent data transmissions from multiple types of network sensors can provide water agencies with invaluable real-time visibility across their networks. Following in the footsteps of advanced monitoring networks similar to those used in the electricity and telecom industries, the water industry is moving toward implementing smart networks. With more solutions becoming available and the benefits becoming more pronounced, water utilities throughout the U.S. and around the world will increasingly look to invest in smart water technologies to enhance network savings and operational efficiency.

Amir Peleg is the founder and CEO of TaKaDu (, a provider of water network monitoring. In 2013, TaKaDu formed a partnership with Psomas to offer TaKaDu’s cloud-based solution to U.S. water agencies. Peleg can be reached at

Posted in Uncategorized | May 20th, 2014 by

Comments are closed.